Langsung ke konten utama

Postingan

Menampilkan postingan dari Februari 21, 2018

Menentukan Himpunan Penyelesaian Sistem Persamaan Linear Dua variabel dengan Metode Substitusi

Secara umum, sistem persamaan linear dua variabel dalam variabel $x$ dan $y$ memenuhi bentuk berikut: $\begin{cases} & \ ax+bx=c \\ & \ dx+ey=f \end{cases}$  dimana $a$, $b$, $c$, $d$, $e$, dan $f$ anggota himpunan bilangan real. Selanjutnya akan dijelaskan cara menentukan himpunan penyelesaian sistem persamaan linear dua variabel (SPLDV) dengan metode substitusi.Metode substitusi adalah salah satu cara yang paling sering digunakan dalam menentukan penyelesaian suatu persamaan. Caranya adalah dengan mensubstitusi (mengganti) variabel tertentu sehingga nilai variabel lainnya dapat ditentukan. Simaklah beberapa contoh berikut. Nomor 1 Dengan cara substitusi, tentukanlah himpunan penyelesaian dari sistem persamaan berikut. $\begin{cases} & \ 2x+y=12 \\ & \ 3x+5y=25 \end{cases}$

Pembahasan
Perhatikan persamaan $2x+y=12$, selanjutnya kita nyatakan $y$ dalam $x$, sebagai berikut.
$\begin{align*}2x+y=12\rightarrow y=12-2x\end{align*}$ 
Selanjutnya, persamaan $y=12-2x$ kita su…

Eksponen

BILANGAN BERPANGKAT (EKSPONEN)
Defenisi Bilangan Berpangkat Untuk $a$ bilangan real dan $n$ bilang bulat positif lebih dari 1,maka $a$ pangkat $n$ ditulis ($a^{n})$ adalah perkalian $n$ buah bilangan $a$. Defenisi ini dapat ditulis: \begin{align} a^n=\underbrace{a×a×a×...×a}_{n\;kali} \end{align} Contoh
$2^{3}=2\times2\times2=8$
$\left (\frac{1}{3} \right)^{2}=\frac{1}{3}\times \frac{1}{3}=\frac{1}{9}$

Sifat - Sifat Bilangan Berpangkat
Misalkan $a$ dan $b$ bilangan real $(a∈R)$ serta $m$, $n$ dan $p$ bilangan bulat positif maka berlaku:
$a^m × a^m=a^{m+n}$$\frac{a^{m}}{a^{n}}=a^{m-n}, a≠0$$(a^{m})^{n}=(a)^{mn}$$(\frac{a^{m}}{b^{n}})^{p}=\frac{a^{mp}}{b^{np}},b≠0$$a^{-n}=\frac{1}{a^{n}},a≠0$$a^{0}=1$ Dengan memanfaatkan sifat-sifat tersebut kita dapat menyelesaikani soal-soal perpangkatan yang sangat kompleks dengan mudah. Perhatikanlah beberapa contoh soal berikut.

Contoh soal 1
Sederhanakan dan nyatakan dalam pangkat positif dari $\frac{x^{-3}y^{-5}z^{2}}{x^{-1}y^{-2}z^{-3}}$.
Jawab
\beg…
Soal dan Pembahasan UN SMP/MTs 2017 Oleh Yan Fardian
Pada kesempatan ini penulis mencoba memberikan pembahasan soal Ujian Nasional tahun 2017 tingkat SMP/MTs, dengan harapan pembahasan soal ini bisa dimanfaatkan sebagai referensi belajar untuk pemantapan persiapan menghadapi USBN ataupun UN tahun 2018 oleh siswa.


Nomor 1 Hasil dari $\left(9^{\frac{1}{3}}\right)^{-6}$ adalah .... (A). 81 (B). 27 (C). $\frac{1}{27}$ (D). $\frac{1}{81}$
Pembahasan
$\begin{align*} \left (9^{\frac{1}{3}} \right )^{-6}&=\left(9\right)^{\frac{1}{3}×(-6)}\\ &=\left (3^{2} \right )^{-2}\\ &=3^{-4}\\ &=\frac{1}{3^{4}}\\ &=\frac{1}{81} \end{align*}$ 

Nomor 2 Hasil dari $5\sqrt{5}\times \sqrt{48}:\sqrt{12}$  adalah ....
(A). $10\sqrt{5}$
(B). $10\sqrt{2}$
(C). $5\sqrt{5}$
(D). $5\sqrt{2}$ 

Pembahasan
$\begin{align*} 5\sqrt{5}\times \sqrt{48}:\sqrt{12}&=5\sqrt{5}\times \left (\sqrt{16}\times \sqrt{3} \right ):\left (\sqrt4\times \sqrt{3} \right )\\ &=5\sqrt{5}\times 4\sqrt{3}:2\sqrt{3}\\&=10\sqrt{5…