Langsung ke konten utama

Sifat - Sifat Logaritma

Pada kesempatan kali ini kembali penulis membahas materi logaritma yang merupakan kelanjutan dari materi sebelumnya yang bisa pengunjung baca disini. Di artikel kali kita akan sama-sama mempelajari sifat-sifat logaritma.
Kita telah mengetahui ada $3$ sifat pokok logaritma dan penting sekali untuk diingat. Ketiga sifat pokok tersebut, yaitu: Sifat-sifat pokok logaritma:                (☞) $^g\textrm{log}\;g=1$                (☞) $^g\textrm{log}\;g^n=n$                (☞) $^g\textrm{log}\;1=0$
Sifat-Sifat Logaritma
Selain ketiga sifat di atas, berikut ini beberapa sifat-sifat penting logaritma lainnya. Sifat 1.  Logaritma Perkalian Logaritma perkalian dua bilangan sama dengan jumlah logaritma dari masing-masing bilangan tadi, dan ditulis: $^g\textrm{log}(a×b)=\;^g\textrm{log}\;a+\;^g\textrm{log}\;b$ Contoh 1 Sederhanakan bentuk logaritma berikut. $1.\;^2\textrm{log}\;16 + \;^2\textrm{log}\;32$ $2.\;\begin{align*}^3\textrm{log}\;2,25+\;^3\textrm{log}\;4,5+\;^3\textrm{log}\;8\end{align*}$ $3.\; ^…

Menentukan Akar-Akar Persamaan Kuadrat

Nilai pengganti $x$ yang memenuhi persamaan kuadrat $ax^{2}+bx+c=0$ disebut akar atau penyelesaian persamaan kuadrat itu. 

Contoh
Selidikilah apakah $x=2$ dan $x=-3$ merupakan akar-akar dari persamaan kuadrat $x^{2}-x-2=0$.

Jawab
Substitusi $x=2$ ke persamaan kuadrat yang diberikan.
$\begin{align*}x^{2}-x-2&=0\\(2)^{2}-(2)-2&=0\\4-4&=0\end{align*}$
Untuk $x=2$ pernyataan bernilai benar maka $2$ adalah akar dari $x^{2}-x-2=0$.

Substitusi $x=-3$ ke persamaan kuadrat yang diberikan.
$\begin{align*}x^{2}-x-2&=0\\(-3)^{2}-(-3)-2&=0\\9+3-2&≠0\end{align*}$
Untuk $x=-3$ pernyataan bernilai salah maka $x=-3$ bukan akar dari persamaan kuadrat $x^{2}-x-2=0$.

Selanjutnya kita akan mempelajari "bagaimana cara menentukan akar-akar persamaan kuadrat?". Akar-akar suatu persamaan kuadrat dapat ditentukan dengan cara pemfaktoran, melengkapkan kuadrat sempurna, dan menggunakan rumus kuadrat. Namun, dalam tulisan ini, penulis hanya akan membahas cara pemfaktoran dan rumus kuadrat saja.

Cara Pemfaktoran
a. Persamaan Kuadrat berbentuk $x^{2}+bx+c=0$
Bila bentuk $x^{2}+bx+c=0$ mempunyai akar-akar rasional maka bentuk itu dapat difaktorkan menjadi $(x+m)(x+n)=0$ dengan ketentuan:
$\begin{align*}m+n&=b\\mn&=c\end{align*}$

Contoh 1
Tentukan akar-akar persamaan kuadrat berikut.
(a). $x^{2}+8x+15=0$
(b). $y^{2}+y-2=0$
(c). $x^{2}-4x+3=0$

Jawab
(a)
$\begin{align*}x^{2}+8x+15&=0\\(x+3)(x+15)&=0\\x=-3\;atau\;x&=-5\end{align*}$
Jadi,akar-akar dari $x^{2}+8x+15=0$ adalah $-3$ dan $-5$.

(b)
$\begin{align*}y^{2}+y-2&=0\\(y-1)(y+2)&=0\\y=1\;\;atau\;\;y&=-2\end{align*}$
Jadi,akar-akar dari $y^{2}+y-2=0$ adalah $1$ dan $-2$.

(c)
$\begin{align*}x^{2}-4x+3&=0\\(x-1)(x-3)&=0\\x=1\;\;atau\;\;x&=3\end{align*}$
Jadi,akar-akar dari $x^{2}-4x+3=0$ adalah $1$ dan $3$

Contoh 2
Salah satu akar dari persamaan kuadrat $x^{2}-mx+18=0$ adalah $3$. Tentukan akar yang lainnya.

Jawab
Substitusi $x=3$ ke persamaan kuadrat.
$\begin{align*}x^{2}-mx+18&=0\\3^{2}-3m+18&=0\\9-3m+18&=0\\-3m&=-27\\m&=9\end{align*}$
Persamaan kuadrat tersebut menjadi $x^{2}-9x+18=0$, sehingga kita bisa menentukan akar yang lainnya,sebagai berikut.
$\begin{align*}x^{2}-9x+18&=0\\(x-3)(x-6)&=0\\x=3\;\;atau\;\;x&=6\end{align*}$
Jadi akar yang lainnya adalah $6$.

b. Persamaan kuadrat berbentuk $ax^{2}+bx+c=0$,dengan $a≠1$
Jika persamaan kuadrat berbentuk $ax^{2}+bx+c=0$ memiliki akar-akar rasional,maka bentuk itu dapat difaktorkan menjadi $\begin{align*}\frac{(ax+m)(ax+n)}{a}\end{align*}$ dengan ketentuan:
$\begin{align*}m+n&=b\\mn&=ac\end{align*}$

Contoh 1
Tentukan penyelesaian persamaan kuadrat $2x^{2}-7x+6=0$.

Jawab
$\begin{align*}2x^{2}-7x+6&=0\\\frac{(2x-4)(2x-3)}{2}&=0\\(x-2)(2x-3)&=0\\x=2\;\;atau\;\;x&=\frac{2}{3}\end{align*}$

Contoh 2
Salah satu akar persamaan kuadrat $(m-1)x^{2}+4x-m=0$ adalah $-2$. Tentukan nilai $m$ dan akar yang lainnya.

Jawab
Substitusi $x=-2$ ke persamaan kuadrat,maka diperoleh:
$\begin{align*}(m-1)x^{2}+4x-m&=0\\(m-1)(-2)^{2}+4(-2)-m&=0\\4m-4-8-m&=0\\3m-12&=0\\3m&=12\\m&=4\end{align*}$
Sehingga persamaan kuadrat tersebut menjadi $3x^{2}+4x-4=0$. Dengan demikian,akar yang lain dapat kita tentukan.
$\begin{align*}3x^{2}+4x-4&=0\\\frac{(3x-2)(3x+6)}{3}&=\\(3x-2)(x+2)&=0\\x=\frac{2}{3}\;\;atau\;\;x&=-2\end{align*}$
Jadi,akar yang lainnya adalah $\begin{align*}\frac{2}{3}\end{align*}$.

Dengan Cara Rumus Kuadrat
Selain dengan cara memfaktorkan,akar-akar suatu persamaan kuadrat jga bisa ditentukan dengan menggunakan rumus kuadrat atau rumus $abc$.
Jika diketahui persamaan kuadrat $ax^{2}+bx+c=0$ dengan $a≠0$, maka akar-akar persamaan kuadrat tersebut ditentukan oleh rumus:
$\begin{align*}x_{1,2}=\frac{-b±\sqrt{b^{2}-4ac}}{2a}\end{align*}$ 

Perhatikan contoh soal berikut.
Contoh
Tentukan penyelesaian persamaan kuadrat berikut dengan rumus $abc$.
(1) $x^{2}-3x-18=0$
(2) $4p^{2}+3p-10=0$
(3) $3x^{2}-6x+2=0$
Jawab
(1) Dari persamaan kuadrat $x^{2}-3x-18=0$ diketahui:
$a=1$, $b=-3$, dan $c=-18$
maka akar-akarnya:
$\begin{align*}x_{1,2}&=\frac{-b±\sqrt{b^{2}-4ac}}{2a}\\&=\frac{-(-3)±\sqrt{(-3)^{2}-4(1)(-18)}}{2.1}\\&=\frac{3±\sqrt{9+72}}{2}\\&=\frac{3±\sqrt{81}}{2}\\&=\frac{3±9}{2}\end{align*}$
$\begin{align*}x_{1}=\frac{3+9}{2}=6\end{align*}$ atau $\begin{align*}x_{2}=\frac{3-9}{2}=-3\end{align*}$
Jadi,penyelesaiannya adalah $6$ dan $-3$.

(2) Dari persamaan kuadrat $4p^{2}+3p-10=0$ diperoleh $a=4$, $b=3$, dan $c=-10$. Maka penyelesaiannya:
$\begin{align*}p_{1,2}&=\frac{-b±\sqrt{b^{2}-4ac}}{2a}\\&=\frac{-3±\sqrt{3^{2}-4(4)(-10)}}{2.4}\\&=\frac{3±\sqrt{9+160}}{8}\\&=\frac{3±\sqrt{169}}{8}\\&=\frac{3±13}{8}\end{align*}$
$\begin{align*}p_{1}=\frac{16}{8}=2\end{align*}$ atau $\begin{align*}p_{2}=\frac{-10}{8}=-\frac{5}{4}\end{align*}$.
Jadi,penyelesaian persamaan kuadrat tersebut adalah $2$ dan $\begin{align*}-\frac{5}{4}\end{align*}$.

(3) Dari persamaan kuadrat $3x^{2}-6x+2=0$ diperoleh $a=3$, $b=-6$, dan $c=2$, maka:
$\begin{align*}x_{1,2}&=\frac{-b±\sqrt{b^{2}-4ac}}{2a}\\&=\frac{-(-6)±\sqrt{(-6)^{2}-4(3)(2)}}{2.3}\\&=\frac{6±\sqrt{36-24}}{6}\\&=\frac{6±\sqrt{12}}{6}\\&=\frac{6±2\sqrt{3}}{6}\end{align*}$
$\begin{align*}x_{1}=\frac{6+2\sqrt{3}}{6}=\frac{1}{3}(3+\sqrt{3})\end{align*}$ atau $\begin{align*}x_{2}=\frac{6-2\sqrt{3}}{6}=\frac{1}{3}(3-\sqrt{3})\end{align*}$.
Jadi,akar-akar persamaan kuadrat tersebut adlalah $\begin{align*}\frac{1}{3}(3+\sqrt{3})\end{align*}$ dan $\begin{align*}\frac{1}{3}(3-\sqrt{3})\end{align*}$.

Dari kedua cara di atas,jelas bahwa RUMUS $abc$ memiliki kelebihan dibandingkan dengan cara memfaktorkan. Cara yang manakah yang lebih mudah,itu semua tergantung yang menyelesaikan soal.

Demikianlah beberapa cara dan contoh soal menentukan akar atau penyelesaian suatu persamaan kuadrat. Jika ada kekeliruan mohon segera dikomentari karena kritik dan saran pengunjung sangat diharapkan untuk bisa lebih baik lagi.

Postingan populer dari blog ini

Buku-Buku Penting

Berikut ini beberapa file Buku dan Ebook yang cukup bagus dijadikan sebagai referensi belajar baik itu untuk siswa, ataupun guru sebagai bahan belajar menghadapi Ulangan, Ujian Nasional, Seleksi Masuk PTN, dan Olimpiade Sains Nasional atau pun kompetisi lainnya. Kalian bisa download secara gratis cukup dengan klik satu kali tulisan "Download".
Ebook SBMPTN/Seleksi PTN/PTS 1. Kimia Sakti: [Download] 2. Soal-Soal Kimia: [Download] 3. Ebook TPA SBMPTN: [Download] 4. Fisika SBMPTN: [Download] 5. Biologi SBMPTN: [Download] 6. Ebook UMB PTN: [Download]
7. Buku Matematika Dasar SBMPTN: [Download]
8. Buku 1 TPA SBMPTN: [Download]
9. Buku 2 TPA SBMPTN: [Download]
10. Buku SOSHUM SBMPTN: [Download]
11. Buku Materi Cerdik SBMPTN: [Download]
12. Buku Lolos SBMPTN-SAINTEK: [Download]
13. Buku 1 Lolos USM PKN STAN:[Download]
14. Buku 2 Paket Prediksi Akurat Masuk STAN:[Download]


Ebook UN SMA 1. Buku Soal UN Fisika SMA: [Download] 2. Ringkasan Matematika SMA: [Download] 3. SPM Biologi SMA: …

Modul Belajar Matematika

Berikut ini beberapa file penting yang bisa didownload.Caranya tinggal klik saja tulisan "download" tersebut.
Khusus SMP 1. Modul OSN SMP klik Download 2. Solusi OSK SMP 2018 Download 3. Soal final Try Out UN 2018 SMP DKI JAKARTA Download 4. Rangkuman dan Soal Matematika SMP Download 5. Ebook Aljabar Persiapan OSN SMP Download 6. Ebook Geometri Untuk OSN Download


Khusus SMA 1. Koleksi Soal Tipe Olimpiade oleh Aldhi Prastya Download
2. Pembahasan soal Tipe Olimpiade oleh Aldhi Prastya Download. Soal2nya di nomor 1
3. Soal Try Out Ujian Nasional DKI Jakarta 2018:

Paket 1 DownloadPaket 2 DownloadPaket 3 Download Paket 4 Download 4. Soal Try Out OSP Prov.Jatim 2018 Bidang Matematika Download
5. Pembahasan Try Out OSP Prov. Jatim 2018 Bidang Matematika Download
7. Soal-soal Geometry dari Wardaya Collage Download
8. Soal OSP Matematika SMA Thn 2018 Download
9. Geometri: Power of A Point Download
10. Soal dan Solusi Download 11. Limit: Soal dan Pembahasan Download

Pembelajaran Kaidah …

Soal-Soal KSM 2018

Berikut ini penulis bagikan beberapa naskah asli soal Kompetisi Sains Madrasah atau yang lebih sering dikenal dengan KSM.  KSM adalah sebuah kompetisi antar siswa yang setara dengan OSN yang dikhususkan kepada anak-anak Madrasah. Soal-soal berikut adalah soal-soal KSM tahun 2018. Kalian bisa download secara gratis dengan cara klik pada tulisan "Download".


Soal KSM MA Tingkat Kabupaten/Kota 1. Soal KSM Bidang Matematika: Download
2. Soal KSM Bidang Fisika: Download 3. Soal KSM Bidang Kimia: Download 4. Soal KSM Bidang Ekonomi: Download 5. Soal KSM Bidang Geografi: Download
6. Soal KSM Bidang Biologi: Download 7. Kunci Jawaban: Download

Jika kalian menginginkan soal-soal OSK,OSP serta modul-modul belajar Matematika lainnya, kalian bisa Kesini.

Jika hal ini bermanfaat,silakan dishare.
Terima kasih.