Langsung ke konten utama

Postingan

Menampilkan postingan dari Agustus 6, 2018

Sifat - Sifat Logaritma

Pada kesempatan kali ini kembali penulis membahas materi logaritma yang merupakan kelanjutan dari materi sebelumnya yang bisa pengunjung baca disini. Di artikel kali kita akan sama-sama mempelajari sifat-sifat logaritma.
Kita telah mengetahui ada $3$ sifat pokok logaritma dan penting sekali untuk diingat. Ketiga sifat pokok tersebut, yaitu: Sifat-sifat pokok logaritma:                (☞) $^g\textrm{log}\;g=1$                (☞) $^g\textrm{log}\;g^n=n$                (☞) $^g\textrm{log}\;1=0$
Sifat-Sifat Logaritma
Selain ketiga sifat di atas, berikut ini beberapa sifat-sifat penting logaritma lainnya. Sifat 1.  Logaritma Perkalian Logaritma perkalian dua bilangan sama dengan jumlah logaritma dari masing-masing bilangan tadi, dan ditulis: $^g\textrm{log}(a×b)=\;^g\textrm{log}\;a+\;^g\textrm{log}\;b$ Contoh 1 Sederhanakan bentuk logaritma berikut. $1.\;^2\textrm{log}\;16 + \;^2\textrm{log}\;32$ $2.\;\begin{align*}^3\textrm{log}\;2,25+\;^3\textrm{log}\;4,5+\;^3\textrm{log}\;8\end{align*}$ $3.\; ^…

Defenisi Logaritma

Kita sudah tahu bentuk umum bilangan berpangkat adalah $a^{n}$ dimana $a$ adalah bilangan pokok atau basis dan $n$ disebut pangkat atau eksponen. Misalnya: $2^{4}=16$ $3^{3}=27$ $9^{\frac{1}{2}}=3$
Lalu,bagaimana jika contoh kasus di atas kita modifikasi seperti berikut. $2^{x}=16$ $3^{n}=27$ Berapakah nilai $x$ dan $n$? Ya benar , nilai $x=4$ dan nilai $n=3$.
Mungkin untuk soal di atas kita tidak akan mengalami kesulitan menentukan nilai $x$ dan $n$. Namun bagaimana jika kita berhadapan dengan soal serupa namun lebih rumit? Misalnya $^4\textrm{log}(5x+4)=3$. Untuk menjawab pertanyaan tersebut kita bisa menggunakan Logaritma.
Logaritma secara sederhana diartikan sebagai invers (kebalikan) dari perpangkatan. Jika di perpangkatan kita mencari hasil perpangkatan dari suatu bilangan, maka di logaritma tugas kita adalah mencari "pangkat" suatu bilangan yang jika diketahui hasil pangkatnya. Seperti pada kasus di atas, $2^{x} = 16$, tugas kita adalah mencari nilai $x$ yang mana $x…