Langsung ke konten utama

Postingan

Menampilkan postingan dari April, 2018

Kisi-Kisi USBN dan UN Tahun 2019

Pada hari Selasa, 27 November 2018 akhirnya Badan Standar Nasional Pendidikan (BSNP) merilis kisi-kisi Ujian Sekolah Berstandar Nasional dan Ujian Nasional tahun 2019.
Fungsi kisi-kisi tersebut adalah sebagai acuab pengembangan dan perakitan naskah soal ujian, baik soal USBN maupun soal UN. Kisi-kisi disusun berdasarkan kriteria pencapaian Standar Komletensi Lulusan, Standar Isi, dan Kurikulum yang berlaku.
Di artikel penulis hanya membagikan kisi-kisi khusus untuk SMA, SMK, dan SMP/MTs. Nahh...kisi-kisi tersebut bisa kalian download, gratis tentunya, cukup dengan hanya klik tulisan "download"
A. Kisi-Kisi USBN 2019 Kisi-Kisi USBN KTSP SMA [Download]Kisi-Kisi USBN K-13 SMA [Download]Kisi-Kisi USBN SMK KTSP [Download]Kisi-Kisi USBN SMK K-13 [Download]Kisi-Kisi USBN SMP/MTs KTSP [Download]Kisi-Kisi USBN SMP/MTs K-13 [Download]
B. Kisi-Kisi UN 2019 Kisi-Kisi UN SMA [Download]Kisi-Kisi UN SMK [Download]Kisi-Kisi UN SMP/MTs [Download] Jangan lupa share link ini agar yang lain bisa p…

Algebra: Problems and Solutions

Berikut adalah contoh-contoh soal tantangan. Dikatakan tantangan karena memang membutuhkan kesabaran dan ketekunan untuk menyelesaikannya...hehehe
Nomor 1 (Aljabar)
Diketahui $a\sqrt{a}+ b\sqrt{b}=183$ dan $a\sqrt{b}+b\sqrt{a}=182$. Tentukan nilai dari $\begin{align*}\frac{9}{5}(a+b)\end{align*}$.
Sumber: Disini
Solusi Misalkan:  $\sqrt{a}=x \rightarrow x^{2}=a$ $\sqrt{b}=y\rightarrow y^{2}=b$ Maka persamaan semula menjadi: $\begin{align*} x^{3}+y^{3}&=183\;\;\;\;\;\;....(1)\\ x^{2}y+y^{2}x=182\;\Rightarrow xy(x+y)&=182\;\;\;\;\;\;.... (2)\\ \end{align*}$ Kita gunakan identitas berikut.
$\begin{align*} (x+y)^{3}&=x^{3}+y^{3}+3(x^{2}y+xy^{2}) \end{align*}$ 
Substitusi persamaan $(1)$ dan $(2)$ ke identitas di atas, maka diperoleh:
$\begin{align*} (x+y)^{3}&=x^{3}+y^{3}+3(x^{2}y+xy^{2})\\ (x+y)^{3}&=183+3(182)\\ (x+y)^{3}&=729\\ x+y&=9\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;....(3) \end{align*}$
Substitusi persamaan $(3)$ ke persamaan $(2)$, di…

Persamaan Garis Singgung Lingkaran (PGSL)

Kita telah mengetahui bahwa ada tiga kemungkinan kedudukan suatu garis terhadap lingkaran,yaitu memotong lingkaran di dua titik berlainan, memotong lingkaran di satu titik (menyinggung), dan tidak memotong lingkaran. Garis yang menyinggung lingkaran inilah yang dinamakan dengan Garis Singgung Lingkaran.
1. Persamaan Garis Singgung Lingkaran Melalui Titik pada Lingkaran
Perhatikan gambar berikut!

Lingkaran berpusat di $P(a,b)$ dan berjari-jari $r$. Garis $g$ disebut garis singgung lingkaran di titik $A(x_{1},y_{1})$ dan $AP$ tegak lurus $g$. Persamaan garis singgung lingkaran di titik $A(x_{1},y_{1})$ diperlihatkan pada tabel berikut.
2. Persamaan Garis Singgung Lingkaran dengan Gradien Tertentu Perhatikan gambar berikut. Lingkaran berpusat di $(a,b)$ berjari-jari $r$. $g$ adalah garis singgung lingkaran dengan gradien $m$. Persamaan garis singgung lingkaran dengan titik pusat $(a,b)$ dan bergradien $m$ diperlihat pada tabel berikut.
3. Persamaan Garis Singgung Lingkaran Melalui suatu Ti…

Kedudukan Garis Terhadap Lingkaran

Setelah di postingan sebelumnya penulis membahas tentang kedudukan suatu titik terhadap lingkaran disini, maka pada tulisan kali ini kembali penulis memaparkan mengenai kedudukan suatu garis terhadap lingkaran.
Misalkan terdapat garis $g$ dengan persamaan $y=mx+n$ dan lingkaran $L$ dengan persamaan $x^{2}+y^{2}+Ax+By+C=0$. Kedudukan garis $g$ terhadap lingkaran $L$ dapat ditentukan dengan cara mensubstitusi persamaan garis $g$ ke persamaan lingkaran $L$. Perhatikan berikut.
$\begin{align*} x^{2}+y^{2}+Ax+By+C&=0\\ x^{2}+(mx+n)^{2}+Ax+B(mx+n)+C&=0\\ x^{2}+m^{2}x^{2}+2mnx+n^{2}+Ax+Bmx+Bn+C&=0\\ (1+m^{2})x^{2}+(2mn+A+Bm)x+(n^{2}+Bn+C)&=0 \end{align*}$ 
Persamaan terakhir dari uraian di atas merupakan persamaan kuadrat dalam variabel $x$. Kita tahu bahwa pada persamaan kuadarat: $(a)$ Jika $D>0$ maka persamaan kuadarat memiliki dua akar real berlainan. $(b)$ Jika $D=0$ maka persamaan kuadarat memiliki akar kembar. $(c)$ Jika $D<0$ maka persamaan kuadarat tidak m…