Langsung ke konten utama

Postingan

Menampilkan postingan dari November 17, 2018

Kisi-Kisi USBN dan UN Tahun 2019

Pada hari Selasa, 27 November 2018 akhirnya Badan Standar Nasional Pendidikan (BSNP) merilis kisi-kisi Ujian Sekolah Berstandar Nasional dan Ujian Nasional tahun 2019.
Fungsi kisi-kisi tersebut adalah sebagai acuab pengembangan dan perakitan naskah soal ujian, baik soal USBN maupun soal UN. Kisi-kisi disusun berdasarkan kriteria pencapaian Standar Komletensi Lulusan, Standar Isi, dan Kurikulum yang berlaku.
Di artikel penulis hanya membagikan kisi-kisi khusus untuk SMA, SMK, dan SMP/MTs. Nahh...kisi-kisi tersebut bisa kalian download, gratis tentunya, cukup dengan hanya klik tulisan "download"
A. Kisi-Kisi USBN 2019 Kisi-Kisi USBN KTSP SMA [Download]Kisi-Kisi USBN K-13 SMA [Download]Kisi-Kisi USBN SMK KTSP [Download]Kisi-Kisi USBN SMK K-13 [Download]Kisi-Kisi USBN SMP/MTs KTSP [Download]Kisi-Kisi USBN SMP/MTs K-13 [Download]
B. Kisi-Kisi UN 2019 Kisi-Kisi UN SMA [Download]Kisi-Kisi UN SMK [Download]Kisi-Kisi UN SMP/MTs [Download] Jangan lupa share link ini agar yang lain bisa p…

Menyusun Persamaan Kuadrat

Pada artikel sebelumnya penulis telah membahas tentang cara menentukan akar-akar persamaan kuadrat $ax^{2}+bx+c=0$. Di artikel kali ini, adalah sebaliknya. Penulis akan memaparkan cara menyusun persamaan kuadrat. Jika $p$ dan $q$ adalah akar-akar persamaan kuadrat, maka persamaan kuadrat tersebut ditentukan oleh rumus:
$x^{2}-(p+q)x+pq=0$ Perhatikan beberapa contoh soal berikut
Soal 1 Tentukanlah persamaan kuadrat yang akar-akarnya $2$ dan $3$.
Pembahasan.
Kita misalkan $p=2$, dan $q=3$, maka:
$\begin{align*}x^{2}-(p+q)x+pq&=0\\x^{2}-(2+3)x+(2)(3)&=0\\x^{2}-5x+2&=0\end{align*}$
Jadi, persamaan kuadrta yang akar-akarnya $2$ dan $3$ adalah $x^{2}-5x+6=0$. Soal 2 Tentukanlah persamaan kuadrat yang akar-akarnya $\frac{-2}{3}$ dan $\frac{1}{2}$.
Pembahasan.
Misllkan $\begin{align*}p=-\frac{2}{3}\end{align*}$, dan $\begin{align*}q=\frac{1}{3}\end{align*}$, maka:
$\begin{align*}x^{2}-(p+q)x+pq&=0\\x^{2}-\left(-\frac{2}{3}+\frac{1}{2}\right)x+\left(-\frac{2}{3}\right)\left(\frac…