Langsung ke konten utama

Postingan

Menampilkan postingan dari April 8, 2018

Diskriminan Persamaan Kuadrat

Pada artikel sebelumnya yang bisa kalian baca disini telah dibahas tentang cara menentukan akar-akar persamaan kuadrat,yang salah satunya adalah rumus $abc$, yaitu $\begin{align*}x_{1,2}=\frac{-b±\sqrt{b^{2}-4ac}}{2a}\end{align*}$. Dari rumus ini tampak bahwa akar-akar suatu persamaan kuadrat sangat ditentujan oleh nilai $b^{2}-4ac$. Bentuk $b^{2}-4ac$ inilah yang dinamakan dengan diskriminanpersamaan kuadrat yang sering dinotasikan dengan $D$. Diskriminan artinya pembeda, jadi nilai diskriminan ini yang membedakan jenis akar-akar persamaan kuadrat.
Nilai diskriminan persamaan kuadrat $ax^{2}+bx+c=0$ ditentukan oleh rumus:
$D=b^{2}-4ac$
Jenis-Jenis Akar Persamaan Kuadrat ditinjau dari Nilai Diskriminannya Jika $D≥0$ maka persamaan kuadrat memiliki akar real.Jika $D>0$ maka persamaan kuadrat mempunyai dua akar real berlainan.Jika $D=0$ maka persamaan kuadrat memiliki dua akar yang sama,real dan rasional.Jika $D<0$ maka persamaan kuadrat tidak memiliki akar-akar real atau imajiner.  …

Algebra: Problems and Solutions

Berikut adalah contoh-contoh soal tantangan. Dikatakan tantangan karena memang membutuhkan kesabaran dan ketekunan untuk menyelesaikannya...hehehe
Nomor 1 (Aljabar)
Diketahui $a\sqrt{a}+ b\sqrt{b}=183$ dan $a\sqrt{b}+b\sqrt{a}=182$. Tentukan nilai dari $\begin{align*}\frac{9}{5}(a+b)\end{align*}$.
Sumber: Disini
Solusi Misalkan:  $\sqrt{a}=x \rightarrow x^{2}=a$ $\sqrt{b}=y\rightarrow y^{2}=b$ Maka persamaan semula menjadi: $\begin{align*} x^{3}+y^{3}&=183\;\;\;\;\;\;....(1)\\ x^{2}y+y^{2}x=182\;\Rightarrow xy(x+y)&=182\;\;\;\;\;\;.... (2)\\ \end{align*}$ Kita gunakan identitas berikut.
$\begin{align*} (x+y)^{3}&=x^{3}+y^{3}+3(x^{2}y+xy^{2}) \end{align*}$ 
Substitusi persamaan $(1)$ dan $(2)$ ke identitas di atas, maka diperoleh:
$\begin{align*} (x+y)^{3}&=x^{3}+y^{3}+3(x^{2}y+xy^{2})\\ (x+y)^{3}&=183+3(182)\\ (x+y)^{3}&=729\\ x+y&=9\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;....(3) \end{align*}$
Substitusi persamaan $(3)$ ke persamaan $(2)$, …