Langsung ke konten utama

Postingan

Menampilkan postingan dari April 8, 2018

Sifat - Sifat Logaritma

Pada kesempatan kali ini kembali penulis membahas materi logaritma yang merupakan kelanjutan dari materi sebelumnya yang bisa pengunjung baca disini. Di artikel kali kita akan sama-sama mempelajari sifat-sifat logaritma.
Kita telah mengetahui ada $3$ sifat pokok logaritma dan penting sekali untuk diingat. Ketiga sifat pokok tersebut, yaitu: Sifat-sifat pokok logaritma:                (☞) $^g\textrm{log}\;g=1$                (☞) $^g\textrm{log}\;g^n=n$                (☞) $^g\textrm{log}\;1=0$
Sifat-Sifat Logaritma
Selain ketiga sifat di atas, berikut ini beberapa sifat-sifat penting logaritma lainnya. Sifat 1.  Logaritma Perkalian Logaritma perkalian dua bilangan sama dengan jumlah logaritma dari masing-masing bilangan tadi, dan ditulis: $^g\textrm{log}(a×b)=\;^g\textrm{log}\;a+\;^g\textrm{log}\;b$ Contoh 1 Sederhanakan bentuk logaritma berikut. $1.\;^2\textrm{log}\;16 + \;^2\textrm{log}\;32$ $2.\;\begin{align*}^3\textrm{log}\;2,25+\;^3\textrm{log}\;4,5+\;^3\textrm{log}\;8\end{align*}$ $3.\; ^…

Algebra: Problems and Solutions

Berikut adalah contoh-contoh soal tantangan. Dikatakan tantangan karena memang membutuhkan kesabaran dan ketekunan untuk menyelesaikannya...hehehe
Nomor 1 (Aljabar)
Diketahui $a\sqrt{a}+ b\sqrt{b}=183$ dan $a\sqrt{b}+b\sqrt{a}=182$. Tentukan nilai dari $\begin{align*}\frac{9}{5}(a+b)\end{align*}$.
Sumber: Disini
Solusi Misalkan:  $\sqrt{a}=x \rightarrow x^{2}=a$ $\sqrt{b}=y\rightarrow y^{2}=b$ Maka persamaan semula menjadi: $\begin{align*} x^{3}+y^{3}&=183\;\;\;\;\;\;....(1)\\ x^{2}y+y^{2}x=182\;\Rightarrow xy(x+y)&=182\;\;\;\;\;\;.... (2)\\ \end{align*}$ Kita gunakan identitas berikut.
$\begin{align*} (x+y)^{3}&=x^{3}+y^{3}+3(x^{2}y+xy^{2}) \end{align*}$ 
Substitusi persamaan $(1)$ dan $(2)$ ke identitas di atas, maka diperoleh:
$\begin{align*} (x+y)^{3}&=x^{3}+y^{3}+3(x^{2}y+xy^{2})\\ (x+y)^{3}&=183+3(182)\\ (x+y)^{3}&=729\\ x+y&=9\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;....(3) \end{align*}$
Substitusi persamaan $(3)$ ke persamaan $(2)$, …