Langsung ke konten utama

Postingan

Menampilkan postingan dari April 2, 2018

Diskriminan Persamaan Kuadrat

Pada artikel sebelumnya yang bisa kalian baca disini telah dibahas tentang cara menentukan akar-akar persamaan kuadrat,yang salah satunya adalah rumus $abc$, yaitu $\begin{align*}x_{1,2}=\frac{-b±\sqrt{b^{2}-4ac}}{2a}\end{align*}$. Dari rumus ini tampak bahwa akar-akar suatu persamaan kuadrat sangat ditentujan oleh nilai $b^{2}-4ac$. Bentuk $b^{2}-4ac$ inilah yang dinamakan dengan diskriminanpersamaan kuadrat yang sering dinotasikan dengan $D$. Diskriminan artinya pembeda, jadi nilai diskriminan ini yang membedakan jenis akar-akar persamaan kuadrat.
Nilai diskriminan persamaan kuadrat $ax^{2}+bx+c=0$ ditentukan oleh rumus:
$D=b^{2}-4ac$
Jenis-Jenis Akar Persamaan Kuadrat ditinjau dari Nilai Diskriminannya Jika $D≥0$ maka persamaan kuadrat memiliki akar real.Jika $D>0$ maka persamaan kuadrat mempunyai dua akar real berlainan.Jika $D=0$ maka persamaan kuadrat memiliki dua akar yang sama,real dan rasional.Jika $D<0$ maka persamaan kuadrat tidak memiliki akar-akar real atau imajiner.  …

Kedudukan Garis Terhadap Lingkaran

Setelah di postingan sebelumnya penulis membahas tentang kedudukan suatu titik terhadap lingkaran disini, maka pada tulisan kali ini kembali penulis memaparkan mengenai kedudukan suatu garis terhadap lingkaran.
Misalkan terdapat garis $g$ dengan persamaan $y=mx+n$ dan lingkaran $L$ dengan persamaan $x^{2}+y^{2}+Ax+By+C=0$. Kedudukan garis $g$ terhadap lingkaran $L$ dapat ditentukan dengan cara mensubstitusi persamaan garis $g$ ke persamaan lingkaran $L$. Perhatikan berikut.
$\begin{align*} x^{2}+y^{2}+Ax+By+C&=0\\ x^{2}+(mx+n)^{2}+Ax+B(mx+n)+C&=0\\ x^{2}+m^{2}x^{2}+2mnx+n^{2}+Ax+Bmx+Bn+C&=0\\ (1+m^{2})x^{2}+(2mn+A+Bm)x+(n^{2}+Bn+C)&=0 \end{align*}$ 
Persamaan terakhir dari uraian di atas merupakan persamaan kuadrat dalam variabel $x$. Kita tahu bahwa pada persamaan kuadarat: $(a)$ Jika $D>0$ maka persamaan kuadarat memiliki dua akar real berlainan. $(b)$ Jika $D=0$ maka persamaan kuadarat memiliki akar kembar. $(c)$ Jika $D<0$ maka persamaan kuadarat tidak m…