Langsung ke konten utama

Postingan

Menampilkan postingan dari April 2, 2018

Perbandingan Trigonometri Sudut-Sudut Istimewa

Sudut istimewa atau biasa juga disebut sudut khusus adalah sudut-sudut yang nilai perbandingan trigonometrinya dapat ditentukan tanpa harus menggunakan alat bantu (seperti kalkulator dan tabel trigonometri). Sudut-sudut istimewa tersebut adalah $0°$, $30°$, $45°$, $60°$, dan $90°$. Nilai-nilai sudut-sudut istimewa ini sering kita jumpai di buku-buku cetak, rangkuman, dan lain-lainnya. Bahkan ada yang sudah yang hafal. Tetapi yang jadi pertanyaan, adakah yang tau dari mana asal-usul nilai tersebut. Buat yang belum tau dari mana nilai-nilai tersebut, tanang!!! Karena pada kesempatan kali ini, penulis mencoba menjelaskan secara sederhana asal-asul nilai-nilai tersebut.

Untuk menentukan nilai-nilai perbandingan trigonometri sudut-sudut istimewa yang dimaksud, kita dapat meggunakan konsep Lingkaran Satuan. Apa itu lingkaran saatua? Lingkaran satuan adalah lingkaran yang berjari-jari satu satuan seperti pada gambar berikut.
Lingkaran satuan itulah yang akan kita pakai.

Perbandingan Trigonom…

Kedudukan Garis Terhadap Lingkaran

Setelah di postingan sebelumnya penulis membahas tentang kedudukan suatu titik terhadap lingkaran disini, maka pada tulisan kali ini kembali penulis memaparkan mengenai kedudukan suatu garis terhadap lingkaran.
Misalkan terdapat garis $g$ dengan persamaan $y=mx+n$ dan lingkaran $L$ dengan persamaan $x^{2}+y^{2}+Ax+By+C=0$. Kedudukan garis $g$ terhadap lingkaran $L$ dapat ditentukan dengan cara mensubstitusi persamaan garis $g$ ke persamaan lingkaran $L$. Perhatikan berikut.
$\begin{align*} x^{2}+y^{2}+Ax+By+C&=0\\ x^{2}+(mx+n)^{2}+Ax+B(mx+n)+C&=0\\ x^{2}+m^{2}x^{2}+2mnx+n^{2}+Ax+Bmx+Bn+C&=0\\ (1+m^{2})x^{2}+(2mn+A+Bm)x+(n^{2}+Bn+C)&=0 \end{align*}$ 
Persamaan terakhir dari uraian di atas merupakan persamaan kuadrat dalam variabel $x$. Kita tahu bahwa pada persamaan kuadarat: $(a)$ Jika $D>0$ maka persamaan kuadarat memiliki dua akar real berlainan. $(b)$ Jika $D=0$ maka persamaan kuadarat memiliki akar kembar. $(c)$ Jika $D<0$ maka persamaan kuadarat tidak m…