Langsung ke konten utama

Postingan

Menampilkan postingan dari Maret 28, 2018

Diskriminan Persamaan Kuadrat

Pada artikel sebelumnya yang bisa kalian baca disini telah dibahas tentang cara menentukan akar-akar persamaan kuadrat,yang salah satunya adalah rumus $abc$, yaitu $\begin{align*}x_{1,2}=\frac{-b±\sqrt{b^{2}-4ac}}{2a}\end{align*}$. Dari rumus ini tampak bahwa akar-akar suatu persamaan kuadrat sangat ditentujan oleh nilai $b^{2}-4ac$. Bentuk $b^{2}-4ac$ inilah yang dinamakan dengan diskriminanpersamaan kuadrat yang sering dinotasikan dengan $D$. Diskriminan artinya pembeda, jadi nilai diskriminan ini yang membedakan jenis akar-akar persamaan kuadrat.
Nilai diskriminan persamaan kuadrat $ax^{2}+bx+c=0$ ditentukan oleh rumus:
$D=b^{2}-4ac$
Jenis-Jenis Akar Persamaan Kuadrat ditinjau dari Nilai Diskriminannya Jika $D≥0$ maka persamaan kuadrat memiliki akar real.Jika $D>0$ maka persamaan kuadrat mempunyai dua akar real berlainan.Jika $D=0$ maka persamaan kuadrat memiliki dua akar yang sama,real dan rasional.Jika $D<0$ maka persamaan kuadrat tidak memiliki akar-akar real atau imajiner.  …

Persamaan Lingkaran

Dalam matematika, lingkaran didefenisikan sebagai himpunan semua titik-titik yang berjarak sama terhadap suatu titik tertentu. Titik tertentu tersebut dinamakan dengan pusat lingkaran, sedangkan jarak tersebut dinamakan dengan jari-jari lingkaran.
Lingkaran bukan lagi istilah asing bagi anak-anak sekolah karena pada setiap jenjang pasti menemukan materi terkait lingkaran. Dalam tulisan ini, akan dibahas mengenai lingkaran secara analitik yang lebih dikhususkan bagi anak-anak SMA.
1. Persamaan Lingkaran dengan Pusat di Titik O(0,0)
Perhatikan gambar berikut!
Gambar di atas menunjukkan sebuah lingkaran dengan titik pusat $O(0,0)$ berjari-jari $r$ dan titik $P(x,y)$ terletak pada lingkaran, serta $Q$ adalah proyeksi titik $P$ pada sumbu $X$. Akibatnya $\triangle OPQ$ adalah segitiga siku-siku dengan siku-siku di titik $Q$. Dengan memanfaatkan teorema pythagoras kita peroleh: $\begin{align*} OQ^{2}+PQ^{2}&=r^{2}\\ (x-0)^{2}+(y-0)^{2}&=r^{2}\\ x^{2}+y^{2}&=r^{2} \end{align*}$ D…