Langsung ke konten utama

Postingan

Menampilkan postingan dari Maret 24, 2018

Perbandingan Trigonometri Sudut-Sudut Istimewa

Sudut istimewa atau biasa juga disebut sudut khusus adalah sudut-sudut yang nilai perbandingan trigonometrinya dapat ditentukan tanpa harus menggunakan alat bantu (seperti kalkulator dan tabel trigonometri). Sudut-sudut istimewa tersebut adalah $0°$, $30°$, $45°$, $60°$, dan $90°$. Nilai-nilai sudut-sudut istimewa ini sering kita jumpai di buku-buku cetak, rangkuman, dan lain-lainnya. Bahkan ada yang sudah yang hafal. Tetapi yang jadi pertanyaan, adakah yang tau dari mana asal-usul nilai tersebut. Buat yang belum tau dari mana nilai-nilai tersebut, tanang!!! Karena pada kesempatan kali ini, penulis mencoba menjelaskan secara sederhana asal-asul nilai-nilai tersebut.

Untuk menentukan nilai-nilai perbandingan trigonometri sudut-sudut istimewa yang dimaksud, kita dapat meggunakan konsep Lingkaran Satuan. Apa itu lingkaran saatua? Lingkaran satuan adalah lingkaran yang berjari-jari satu satuan seperti pada gambar berikut.
Lingkaran satuan itulah yang akan kita pakai.

Perbandingan Trigonom…

Soal dan Pembahasan Untuk Persiapan SBMPTN 2018

Hampir seminggu ini bingung mau menulis apa di blog. Selain karena semangat yang  lagi menurun juga karena lagi kering ide. Ditambah lagi seminggu ini nunggui anak-anak USBN di kelas,suntuk,coba-coba buka laptop,alhamdulillah terbersit dalam pikiran untuk menulia contoh soal dan pembahasan soal-soal selevel soal SBMPTN. Semoga tulisan berikut bermanfaat bagi yang memerlukan.
Nomor 1 Jika $a$ dan $b$ adalah akar-akar dari persamaan $\begin{align*}(3x^{2}+4x-4)^{2x^{2}-x+7}=(3x^{2}+4x-4)^{x^{2}+x+3}\end{align*}$
dengan $a>b$,maka nilai $\log_{4}3a-\log_{8}(-b)$ adalah ....
A. $\begin{align*}\frac{3}{2}\end{align*}$
B. $\begin{align*}2\end{align*}$
C. $\begin{align*}\frac{1}{7}\end{align*}$
D. $\begin{align*}\frac{1}{6}\end{align*}$
E.  $\begin{align*}\frac{1}{5}\end{align*}$

Pembahasan
Kita tahu bahwa $2x^{2}-2x+7$ dan $x^{2}+x+3$ akan selalu definit positif untuk setiap $x$ himpunan bilangan real.
Sehingga persamaan eksponen pada soal memenuhi bentuk: $h(x)^{f(x)}=h(x)^{g(x)}$,dengan $f(x)>…