Langsung ke konten utama

Postingan

Menampilkan postingan dari Maret 24, 2018

Jarak Titik dengan Titik pada Dimensi 3

Secara sederhana, jarak dua titik adalah jarak terpendek yang yang menghubungkan kedua titik tersebut.  Sebagai ilustrasi, untuk menentukan jarak titik $A$ dan titik $B$ pada gambar berikut, kita bisa terlebih dahulu menghitung jarak terdekat dari titik $A$ ke titik $B$.

Dari titik $A$ ke titik $B$ dapat dilalui dengan beberapa cara (lintasan), yaitu:  $A-P-Q-B$$A-R-B$$A-B$ Dari ketiga lintasan tersebut, lintasan $A-B$ merupakan jarak terpendek yang menghubungkan titik $A$ dan titik $B$.
Defenisi
Berangkat dari ilustrasi di atas, jarak dua titik dapat didefenisikan sebagai berikut.

Misalkan terdapat 2 buah titik $A$ dan $B$ sedemikian, maka jarak titik $A$ dan $B$ adalah panjang ruas garis terpendek penghubung titik $A$ dan $B$. Terkait dengan jarak titik pada bangun ruang, erhatikan gambar kubus berikut.
Jarak titik $A$ dan titik $G$ pada kubus $ABCD.EFGH$ tersebut sama dengan panjang garis $AG$.Jarak titik $E$ dan titik $A$ sama dengan panjang garis $EA$.Jarak titik $B$ dan ti…

Soal dan Pembahasan Untuk Persiapan SBMPTN 2018

Hampir seminggu ini bingung mau menulis apa di blog. Selain karena semangat yang  lagi menurun juga karena lagi kering ide. Ditambah lagi seminggu ini nunggui anak-anak USBN di kelas,suntuk,coba-coba buka laptop,alhamdulillah terbersit dalam pikiran untuk menulia contoh soal dan pembahasan soal-soal selevel soal SBMPTN. Semoga tulisan berikut bermanfaat bagi yang memerlukan.
Nomor 1 Jika $a$ dan $b$ adalah akar-akar dari persamaan $\begin{align*}(3x^{2}+4x-4)^{2x^{2}-x+7}=(3x^{2}+4x-4)^{x^{2}+x+3}\end{align*}$
dengan $a>b$,maka nilai $\log_{4}3a-\log_{8}(-b)$ adalah ....
A. $\begin{align*}\frac{3}{2}\end{align*}$
B. $\begin{align*}2\end{align*}$
C. $\begin{align*}\frac{1}{7}\end{align*}$
D. $\begin{align*}\frac{1}{6}\end{align*}$
E.  $\begin{align*}\frac{1}{5}\end{align*}$

Pembahasan
Kita tahu bahwa $2x^{2}-2x+7$ dan $x^{2}+x+3$ akan selalu definit positif untuk setiap $x$ himpunan bilangan real.
Sehingga persamaan eksponen pada soal memenuhi bentuk: $h(x)^{f(x)}=h(x)^{g(x)}$,dengan $f(x)>…