Langsung ke konten utama

Postingan

Menampilkan postingan dari Maret 19, 2018

Sifat - Sifat Logaritma

Pada kesempatan kali ini kembali penulis membahas materi logaritma yang merupakan kelanjutan dari materi sebelumnya yang bisa pengunjung baca disini. Di artikel kali kita akan sama-sama mempelajari sifat-sifat logaritma.
Kita telah mengetahui ada $3$ sifat pokok logaritma dan penting sekali untuk diingat. Ketiga sifat pokok tersebut, yaitu: Sifat-sifat pokok logaritma:                (☞) $^g\textrm{log}\;g=1$                (☞) $^g\textrm{log}\;g^n=n$                (☞) $^g\textrm{log}\;1=0$
Sifat-Sifat Logaritma
Selain ketiga sifat di atas, berikut ini beberapa sifat-sifat penting logaritma lainnya. Sifat 1.  Logaritma Perkalian Logaritma perkalian dua bilangan sama dengan jumlah logaritma dari masing-masing bilangan tadi, dan ditulis: $^g\textrm{log}(a×b)=\;^g\textrm{log}\;a+\;^g\textrm{log}\;b$ Contoh 1 Sederhanakan bentuk logaritma berikut. $1.\;^2\textrm{log}\;16 + \;^2\textrm{log}\;32$ $2.\;\begin{align*}^3\textrm{log}\;2,25+\;^3\textrm{log}\;4,5+\;^3\textrm{log}\;8\end{align*}$ $3.\; ^…

Fungsi Invers (Fungsi Balikan)

Defenisi Fungsi Invers Jika fungsi $f:A\rightarrow B$, dengan $\begin{align*} f=\left \{ (x,y)|y=f(x),x\in A\;\textrm{dan}\;y\in B \right \} \end{align*}$ maka relasi $g:B\rightarrow A$ dengan $\begin{align*} f=\left \{ (y,x)|x=g(y),x\in A\;\textrm{dan}\;y\in B \right \} \end{align*}$ disebut invers fungsi $f$ (ditulis $f^{-1}$). Jika $f^{-1}$ merupakan fungsi maka $f^{-1}$ disebut fungsi invers dan jika $f^{-1}$ bukan merupakan fungsi maka $f^{-1}$ disebut invers $f$. Jika $g$ ada, $g$ dinyatakan dengan $f^{-1}$, sehingga $f^{-1}(y)=x\leftrightarrow f(x)=y$.
(Husein Tampomas)
Syarat Invers suatu Fungsi Merupakan Fungsi Invers
Fungsi $f:A\rightarrow B$ mempunyai fungsi invers jika dan hanya jika $f$ adalah fungsi bijektif (berkorespondensi satu-satu).
Husein Tampomas Menentukan Invers Suatu Fungsi
Langkah 1: Ubahlah fungsi $y=f(x)$ menjadi bentuk $x=f(y)$.
Langkah 2: Tuliskan $x$ sebagai $f^{-1}(y)$ sehingga $f^{-1}(y)=f(y)$.
Langkah 3: Ubahlah variabel $y$ dengan $x$ sehingga diperole…