Langsung ke konten utama

Postingan

Menampilkan postingan dari Maret 7, 2018

Jarak Titik dengan Titik pada Dimensi 3

Secara sederhana, jarak dua titik adalah jarak terpendek yang yang menghubungkan kedua titik tersebut.  Sebagai ilustrasi, untuk menentukan jarak titik $A$ dan titik $B$ pada gambar berikut, kita bisa terlebih dahulu menghitung jarak terdekat dari titik $A$ ke titik $B$.

Dari titik $A$ ke titik $B$ dapat dilalui dengan beberapa cara (lintasan), yaitu:  $A-P-Q-B$$A-R-B$$A-B$ Dari ketiga lintasan tersebut, lintasan $A-B$ merupakan jarak terpendek yang menghubungkan titik $A$ dan titik $B$.
Defenisi
Berangkat dari ilustrasi di atas, jarak dua titik dapat didefenisikan sebagai berikut.

Misalkan terdapat 2 buah titik $A$ dan $B$ sedemikian, maka jarak titik $A$ dan $B$ adalah panjang ruas garis terpendek penghubung titik $A$ dan $B$. Terkait dengan jarak titik pada bangun ruang, erhatikan gambar kubus berikut.
Jarak titik $A$ dan titik $G$ pada kubus $ABCD.EFGH$ tersebut sama dengan panjang garis $AG$.Jarak titik $E$ dan titik $A$ sama dengan panjang garis $EA$.Jarak titik $B$ dan ti…

Kesamaan Pada Suku Banyak

Misalkan terdapat dua suku banyak yaitu suku banyak $f(x)$ dan $g(x)$. Suku banyak $f(x)$ dan $g(x)$ dikatakan sama jika kedua suku banyak tersebut mempunyai nilai yang sama untuk variabel $x$ pada bilangan real. Kesamaan dua suku banyak $f(x)$ dan $g(x)$ ditulis $\begin{align*} f(x)\equiv g(x) \end{align*}$ .
Perhatiakan dua suku banyak $f(x)$ dan $g(x)$ dalam bentuk umum sebagai berikut. $\begin{align*} f(x)&=a_{n}x^{n}+a_{n-1}x^{n-1}+a_{n-2}x^{n-2}+...+a_{1}x+a_{0}\\ g(x)&=b_{n}x^{n}+b_{n-1}x^{n-1}+b_{n-2}x^{n-2}+...+b_{1}x+b_{0}\\ \end{align*}$ Jika $f(x)$ dan $g(x)$ mempunyai nilai yang sama untuk $(n+1)$ nilai $x$ yang berbeda, maka berlaku hubungan: $\begin{align*} a_{n}=b_{n},\;a_{n-1}=b_{n-1},...\;a_{1}=b_{1},\;a_{0}=b_{0} \end{align*}$ Kesamaan suku banyak di atas dapat digunakan untuk mengetahui koefisien-koefisien tak tentu suatu bentuk aljabar, yaitu koefisien yang belum diketahui nilainya. Supaya lebih jelas, perhatikanlah beberapa contoh soal berikut.
Soal 1 T…