Langsung ke konten utama

Postingan

Menampilkan postingan dari Maret 7, 2018

Sifat - Sifat Logaritma

Pada kesempatan kali ini kembali penulis membahas materi logaritma yang merupakan kelanjutan dari materi sebelumnya yang bisa pengunjung baca disini. Di artikel kali kita akan sama-sama mempelajari sifat-sifat logaritma.
Kita telah mengetahui ada $3$ sifat pokok logaritma dan penting sekali untuk diingat. Ketiga sifat pokok tersebut, yaitu: Sifat-sifat pokok logaritma:                (☞) $^g\textrm{log}\;g=1$                (☞) $^g\textrm{log}\;g^n=n$                (☞) $^g\textrm{log}\;1=0$
Sifat-Sifat Logaritma
Selain ketiga sifat di atas, berikut ini beberapa sifat-sifat penting logaritma lainnya. Sifat 1.  Logaritma Perkalian Logaritma perkalian dua bilangan sama dengan jumlah logaritma dari masing-masing bilangan tadi, dan ditulis: $^g\textrm{log}(a×b)=\;^g\textrm{log}\;a+\;^g\textrm{log}\;b$ Contoh 1 Sederhanakan bentuk logaritma berikut. $1.\;^2\textrm{log}\;16 + \;^2\textrm{log}\;32$ $2.\;\begin{align*}^3\textrm{log}\;2,25+\;^3\textrm{log}\;4,5+\;^3\textrm{log}\;8\end{align*}$ $3.\; ^…

Kesamaan Pada Suku Banyak

Misalkan terdapat dua suku banyak yaitu suku banyak $f(x)$ dan $g(x)$. Suku banyak $f(x)$ dan $g(x)$ dikatakan sama jika kedua suku banyak tersebut mempunyai nilai yang sama untuk variabel $x$ pada bilangan real. Kesamaan dua suku banyak $f(x)$ dan $g(x)$ ditulis $\begin{align*} f(x)\equiv g(x) \end{align*}$ .
Perhatiakan dua suku banyak $f(x)$ dan $g(x)$ dalam bentuk umum sebagai berikut. $\begin{align*} f(x)&=a_{n}x^{n}+a_{n-1}x^{n-1}+a_{n-2}x^{n-2}+...+a_{1}x+a_{0}\\ g(x)&=b_{n}x^{n}+b_{n-1}x^{n-1}+b_{n-2}x^{n-2}+...+b_{1}x+b_{0}\\ \end{align*}$ Jika $f(x)$ dan $g(x)$ mempunyai nilai yang sama untuk $(n+1)$ nilai $x$ yang berbeda, maka berlaku hubungan: $\begin{align*} a_{n}=b_{n},\;a_{n-1}=b_{n-1},...\;a_{1}=b_{1},\;a_{0}=b_{0} \end{align*}$ Kesamaan suku banyak di atas dapat digunakan untuk mengetahui koefisien-koefisien tak tentu suatu bentuk aljabar, yaitu koefisien yang belum diketahui nilainya. Supaya lebih jelas, perhatikanlah beberapa contoh soal berikut.
Soal 1 T…